Relating Foliations and Dynamical Systems

Jeff Ford

Gustavus Adolphus College

Table of contents

1. Introduction
2. Foliations
3. Relating foliations and dynamics

Introduction

Dynamical Systems

Given a topological space X, a dynamical system is a triple (X, \mathbb{R}, π), where π is a continuous map $\pi: \mathbb{R} \times X \rightarrow X$, such that, for all $x \in X$, and $t_{1}, t_{2} \in \mathbb{R}$,

- $\pi(0, x)=x$
- $\pi\left(t_{1}, \pi\left(t_{2}, x\right)\right)=\pi\left(t_{1}+t_{2}, x\right)$.

Dynamical Systems

Given a topological space X, a dynamical system is a triple (X, \mathbb{R}, π), where π is a continuous map $\pi: \mathbb{R} \times X \rightarrow X$, such that, for all $x \in X$, and $t_{1}, t_{2} \in \mathbb{R}$,

- $\pi(0, x)=x$
- $\pi\left(t_{1}, \pi\left(t_{2}, x\right)\right)=\pi\left(t_{1}+t_{2}, x\right)$.

The space X is called the phase space and the map π is the phase map. We may use $t x=\pi(t, x)$ for brevity.

Dynamical Systems

Given a topological space X, a dynamical system is a triple (X, \mathbb{R}, π), where π is a continuous map $\pi: \mathbb{R} \times X \rightarrow X$, such that, for all $x \in X$, and $t_{1}, t_{2} \in \mathbb{R}$,

- $\pi(0, x)=x$
- $\pi\left(t_{1}, \pi\left(t_{2}, x\right)\right)=\pi\left(t_{1}+t_{2}, x\right)$.

The space X is called the phase space and the map π is the phase map. We may use $t x=\pi(t, x)$ for brevity.
For purposes of this talk, we will use \mathbb{R}^{2} or \mathbb{R}^{3} as our phase space.

Definitions

For a given point $x \in X$,

- orbit $-\gamma(x)=\{t x: t \in \mathbb{R}\}$.

Definitions

For a given point $x \in X$,

- orbit $-\gamma(x)=\{t x: t \in \mathbb{R}\}$.
- We also refer to the orbit as the trajectory.
- If there are no fixed points (where $t x=x$ for all $t \in \mathbb{R}$), then the dynamical system is non-singular.

Ways to describe a dynamical system

- Parametric equations

Ways to describe a dynamical system

- Parametric equations
- Potential function

Ways to describe a dynamical system

- Parametric equations
- Potential function
- Vector Field

Ways to describe a dynamical system

- Parametric equations
- Potential function
- Vector Field

Parametric Example

Suppose we have the dynamical system from the function

$$
\pi(t, x, y)=\left(\sqrt{x^{2}+y^{2}} \cos (t), \sqrt{x^{2}+y^{2}} \sin (t)\right) .
$$

Parametric Example

Suppose we have the dynamical system from the function

$$
\pi(t, x, y)=\left(\sqrt{x^{2}+y^{2}} \cos (t), \sqrt{x^{2}+y^{2}} \sin (t)\right) .
$$

Vector Field Example

$$
\dot{x}=-x \text { and } \dot{y}=y
$$

Potential function example

In polar coordinates, consider the potential function

$$
\varphi(r, \theta)=\left(r+\frac{1}{r}\right) \cos \theta .
$$

Potential function example

In polar coordinates, consider the potential function

$$
\varphi(r, \theta)=\left(r+\frac{1}{r}\right) \cos \theta .
$$

Volume-preserving Dynamics

- Suppose that X is our phase space, and $A \subset X$

Volume-preserving Dynamics

- Suppose that X is our phase space, and $A \subset X$
- We can introduce a way to measure the volume of A.

Volume-preserving Dynamics

- Suppose that X is our phase space, and $A \subset X$
- We can introduce a way to measure the volume of A.
- Since we're in \mathbb{R}^{2} or \mathbb{R}^{2} here, let's go with the usual area and volume here.

Volume-preserving Dynamics

- Suppose that X is our phase space, and $A \subset X$
- We can introduce a way to measure the volume of A.
- Since we're in \mathbb{R}^{2} or \mathbb{R}^{2} here, let's go with the usual area and volume here.
- Call our function $\mu: X \rightarrow \mathbb{R}$, that takes in a subset of X, and returns a real number for the volume.

Volume-preserving Dynamics

- Suppose that X is our phase space, and $A \subset X$
- We can introduce a way to measure the volume of A.
- Since we're in \mathbb{R}^{2} or \mathbb{R}^{2} here, let's go with the usual area and volume here.
- Call our function $\mu: X \rightarrow \mathbb{R}$, that takes in a subset of X, and returns a real number for the volume.
- If for any $t \in \mathbb{R}, \mu(A)=\mu(t A)$, then our dynamical system volume-preserving.

Example

Return to the potential function

$$
\varphi(r, \theta)=\left(r+\frac{1}{r}\right) \cos \theta .
$$

Example

Return to the potential function

$$
\varphi(r, \theta)=\left(r+\frac{1}{r}\right) \cos \theta .
$$

- This describes the flow in the plane which avoids a disk of radius 1 , centered at the origin.

Example

Return to the potential function

$$
\varphi(r, \theta)=\left(r+\frac{1}{r}\right) \cos \theta .
$$

- This describes the flow in the plane which avoids a disk of radius 1 , centered at the origin.
- We can verify that this flow is divergence-free. This means that, in Cartesian coordinates,

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}+\frac{\partial^{2} \varphi}{\partial z^{2}}=0
$$

Example

Return to the potential function

$$
\varphi(r, \theta)=\left(r+\frac{1}{r}\right) \cos \theta
$$

- This describes the flow in the plane which avoids a disk of radius 1 , centered at the origin.
- We can verify that this flow is divergence-free. This means that, in Cartesian coordinates,

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}+\frac{\partial^{2} \varphi}{\partial z^{2}}=0
$$

- In polar coordinates, we use Laplace's Equation.

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \varphi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \varphi}{\partial \theta^{2}}+\frac{\partial^{2} \varphi}{\partial z^{2}}=0
$$

Example

Return to the potential function

$$
\varphi(r, \theta)=\left(r+\frac{1}{r}\right) \cos \theta .
$$

- This describes the flow in the plane which avoids a disk of radius 1 , centered at the origin.
- We can verify that this flow is divergence-free. This means that, in Cartesian coordinates,

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}+\frac{\partial^{2} \varphi}{\partial z^{2}}=0
$$

- In polar coordinates, we use Laplace's Equation.

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \varphi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \varphi}{\partial \theta^{2}}+\frac{\partial^{2} \varphi}{\partial z^{2}}=0
$$

- It can be shown that this is equivalent to preserving volume, or in this 2-dimensional case, preserving area.

Example

Our flow does satisfy this condition, and hence, it preserves area.

Piecewise-linear dynamics

What does it mean to be a PL phase space?

Piecewise-linear dynamics

What does it mean to be a PL phase space?

- Start with a phase space.

Piecewise-linear dynamics

What does it mean to be a $P L$ phase space?

- Start with a phase space.
- Subdivide into simplices.

Piecewise-linear dynamics

What does it mean to be a $P L$ phase space?

- Start with a phase space.
- Subdivide into simplices.
- In the end, you have a triangulation.

Examples

Let's try just a torus.

Examples

Let's try just a torus.

Examples

Let's try just a torus.

Examples

Let's try just a torus.

Examples

Let's try just a torus.

Examples

Let's try just a torus.

Examples

Let's try just a torus.

Examples

Let's try just a torus.

Piecewise-linear Dynamics

Given a phase space X, and a dynamical system (X, \mathbb{R}, π), the system is piecewise-linear if the trajectories are linear on each simplex in the triangulation of X.

PL dynamics examples

Consider a 4-fold approximation of an annulus, with all trajectories spiraling in towards the center of the annulus.

PL dynamics examples

Consider a 4-fold approximation of an annulus, with all trajectories spiraling in towards the center of the annulus.

Foliations

1-foliations

Let S be an atlas on a phase space X, that is, a collection of open sets and maps, $\left(U_{i}, \varphi_{i}\right)$, where $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ is a smooth embedding, and the set of all U_{i} covers M, with φ_{i} and φ_{j} agreeing on their overlap.

1-foliations

Let S be an atlas on a phase space X, that is, a collection of open sets and maps, $\left(U_{i}, \varphi_{i}\right)$, where $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ is a smooth embedding, and the set of all U_{i} covers M, with φ_{i} and φ_{j} agreeing on their overlap.

Phase Space X
(not necessarily in \mathbb{R}^{N})

1-foliations

Let S be an atlas on a phase space X, that is, a collection of open sets and maps, $\left(U_{i}, \varphi_{i}\right)$, where $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ is a smooth embedding, and the set of all U_{i} covers M, with φ_{i} and φ_{j} agreeing on their overlap.

Each pair $\left(U_{i}, \varphi_{i}\right) \in S$ is known as a chart.

1-foliations

Fix some indexing set A. Let $\mathcal{F}=\left\{L_{\alpha}: \alpha \in A\right\}$ be a collection of arcwise connected subsets of $M . \mathcal{F}$ is a 1-dimensional folation of M if
(i) $L_{\alpha} \cap L_{\beta}=\emptyset$ for $\alpha \neq \beta$
(ii) $\bigcup_{\alpha \in A} L_{\alpha}=M$.
(iii) Given any point $p \in M$, there exists a chart of $\left(U_{\lambda}, \varphi_{\lambda}\right)$ about p, such that for L_{α} with $L_{\alpha} \cap U_{\lambda} \neq \emptyset$, each path component of $\varphi\left(L_{\alpha} \cap U_{\lambda}\right)$ is of the form

$$
\left\{x_{1} \in \varphi_{\lambda}\left(U_{\lambda}\right): x_{2}=c_{1}, x_{3}=c_{2}, \ldots, x_{n}=c_{n-1}\right\}
$$

where each c_{i} is a constant determined by L_{α}.

Each L_{α} is a leaf of the foliation \mathcal{F}. We can view the embeddings as splitting \mathbb{R}^{n} into two pieces, \mathbb{R} and \mathbb{R}^{n-1}. On \mathbb{R}, the coordinates of the embedding vary with L_{α}, but on \mathbb{R}^{n-1}, the coordinates are fixed.

Each L_{α} is a leaf of the foliation \mathcal{F}. We can view the embeddings as splitting \mathbb{R}^{n} into two pieces, \mathbb{R} and \mathbb{R}^{n-1}. On \mathbb{R}, the coordinates of the embedding vary with L_{α}, but on \mathbb{R}^{n-1}, the coordinates are fixed.

Each L_{α} is a leaf of the foliation \mathcal{F}. We can view the embeddings as splitting \mathbb{R}^{n} into two pieces, \mathbb{R} and \mathbb{R}^{n-1}. On \mathbb{R}, the coordinates of the embedding vary with L_{α}, but on \mathbb{R}^{n-1}, the coordinates are fixed.

We say the foliation is oriented if we choose a direction in which we can move on the leaves.

Examples

Examples

Examples

Examples

Measured-foliations

Can we come up with an idea, similar to volume-preserving dynamical systems, for a foliation?

Measured-foliations

Can we come up with an idea, similar to volume-preserving dynamical systems, for a foliation?

- Start with a foliation of X.

Measured-foliations

Can we come up with an idea, similar to volume-preserving dynamical systems, for a foliation?

- Start with a foliation of X.
- Divide X up into little subsets, called flow boxes.

Measured-foliations

Can we come up with an idea, similar to volume-preserving dynamical systems, for a foliation?

- Start with a foliation of X.
- Divide X up into little subsets, called flow boxes.
- The flow boxes should be small enough that, inside of a box, the leaves of the foliation only move in one direction.

Measured-foliations

Can we come up with an idea, similar to volume-preserving dynamical systems, for a foliation?

- Start with a foliation of X.
- Divide X up into little subsets, called flow boxes.
- The flow boxes should be small enough that, inside of a box, the leaves of the foliation only move in one direction.
- On each box a subset of X which is not parallel to any leaf, is a small transversal.

Measured-foliations

Can we come up with an idea, similar to volume-preserving dynamical systems, for a foliation?

- Start with a foliation of X.
- Divide X up into little subsets, called flow boxes.
- The flow boxes should be small enough that, inside of a box, the leaves of the foliation only move in one direction.
- On each box a subset of X which is not parallel to any leaf, is a small transversal.
- We need a function η which assigns a real number to each small transversal.

Examples

Start with a box

Examples

Only one coordinate changes on each leaf.

Examples

Add in a transversal, which we call α.

Examples

Throw in some coordinates, and I declare $\eta(\alpha)=6$

Isotopies of transversals

Given two transversals α and β, we say α is isotopic to β, if α can be moved to β, with both endpoints staying on leaves.

Isotopies of transversals

Given two transversals α and β, we say α is isotopic to β, if α can be moved to β, with both endpoints staying on leaves.

Isotopies of transversals

Given two transversals α and β, we say α is isotopic to β, if α can be moved to β, with both endpoints staying on leaves.

Given a space X, and a foliation \mathcal{F} on X, we say that \mathcal{F} is a measured-foliation with measure η, if, for any two isotopic small transversals α and β,

$$
\eta(\alpha)=\eta(\beta) .
$$

Relating foliations and dynamics

Volume-preserving dynamics \Rightarrow measured-foliation

Let's take a hyperboloid of one sheet X, with parametric equations

- $x(u, v)=\sqrt{u^{2}+1} \cos (v)$
- $y(u, v)=\sqrt{u^{2}+1} \sin (v)$
- $z(u, v)=u$
for $u \in(-1,1)$ and $v \in[0,2 \pi)$

For each $(x, y, z) \in X$, define
$\pi(t,(x, y, z))=\left(\sqrt{z^{2}+1} \cos \left(\tan ^{-1} y / x+t\right), \sqrt{z^{2}+1} \sin \left(\tan ^{-1} y / x+t\right), z\right)$

For each $(x, y, z) \in X$, define
$\pi(t,(x, y, z))=\left(\sqrt{z^{2}+1} \cos \left(\tan ^{-1} y / x+t\right), \sqrt{z^{2}+1} \sin \left(\tan ^{-1} y / x+t\right), z\right)$
We can check that this is a dynamical system (by being careful with the arctangent, and that the trajectories on X look like this.

We can also check that this dynamical system is volume-preserving. Not too tough.

We can also check that this dynamical system is volume-preserving. Not too tough.

But it can also be used to make a measured-foliation, with each trajectory corresponding to a leaf.

We can also check that this dynamical system is volume-preserving. Not too tough.

But it can also be used to make a measured-foliation, with each trajectory corresponding to a leaf.

Measured foliations \Rightarrow volume-preserving dynamics

What about the other direction?

Measured foliations \Rightarrow volume-preserving dynamics

What about the other direction?

- Start with a measured foliation.
- The change in all but one coordinate is preserved when we move between isotopic transversals.
- For each leaf, calculate it's length.
- Adjust the speed of the dynamical system so that the change in the remaining coordinate is preserved.

So what is this good for?

Here's a problem I needed to solve recently.

So what is this good for?

Here's a problem I needed to solve recently.
Can we find a volume-preserving, non-singular, PL dynamical system on a cylinder, with a solid torus missing from the inside of the cylinder, where the leaves around the missing torus are circles, and the leaves on the outside boundary of the cylinder are vertical lines?

So what is this good for?

Here's a problem I needed to solve recently.
Can we find a volume-preserving, non-singular, PL dynamical system on a cylinder, with a solid torus missing from the inside of the cylinder, where the leaves around the missing torus are circles, and the leaves on the outside boundary of the cylinder are vertical lines?
Good luck building that directly from a dynamical system!

So what is this good for?

Here's a problem I needed to solve recently.
Can we find a volume-preserving, non-singular, PL dynamical system on a cylinder, with a solid torus missing from the inside of the cylinder, where the leaves around the missing torus are circles, and the leaves on the outside boundary of the cylinder are vertical lines?
Good luck building that directly from a dynamical system!
It's still not exactly easy with a foliation, but at least it's possible!

