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Introduction



Dynamical Systems

Given a topological space X , a dynamical system is a triple (X ,R, π),

where π is a continuous map π : R× X → X , such that, for all x ∈ X ,

and t1, t2 ∈ R,

• π(0, x) = x

• π(t1, π(t2, x)) = π(t1 + t2, x).

The space X is called the phase space and the map π is the phase map.

We may use tx = π(t, x) for brevity.

For purposes of this talk, we will use R2 or R3 as our phase space.
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Definitions

For a given point x ∈ X ,

• orbit - γ(x) = {tx : t ∈ R}.

• We also refer to the orbit as the trajectory.

• If there are no fixed points (where tx = x for all t ∈ R), then the

dynamical system is non-singular.
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Ways to describe a dynamical system

• Parametric equations

• Potential function

• Vector Field
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Parametric Example

Suppose we have the dynamical system from the function

π(t, x , y) =
(√

x2 + y2 cos(t),
√
x2 + y2 sin(t)

)
.
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Vector Field Example

·
x= −x and

·
y= y
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Potential function example

In polar coordinates, consider the potential function

ϕ(r , θ) = (r +
1

r
) cos θ.
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Volume-preserving Dynamics

• Suppose that X is our phase space, and A ⊂ X

• We can introduce a way to measure the volume of A.

• Since we’re in R2 or R2 here, let’s go with the usual area and

volume here.

• Call our function µ : X → R, that takes in a subset of X , and

returns a real number for the volume.

• If for any t ∈ R, µ(A) = µ(tA), then our dynamical system

volume-preserving.
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Example

Return to the potential function

ϕ(r , θ) = (r +
1

r
) cos θ.

• This describes the flow in the plane which avoids a disk of radius 1,

centered at the origin.

• We can verify that this flow is divergence-free. This means that, in

Cartesian coordinates,

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
= 0

• In polar coordinates, we use Laplace’s Equation.

1

r

∂

∂r
(r
∂ϕ

∂r
) +

1

r2
∂2ϕ

∂θ2
+
∂2ϕ

∂z2
= 0

• It can be shown that this is equivalent to preserving volume, or in

this 2-dimensional case, preserving area.
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Example

Our flow does satisfy this condition, and hence, it preserves area.
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Piecewise-linear dynamics

What does it mean to be a PL phase space?

• Start with a phase space.

• Subdivide into simplices.

• In the end, you have a triangulation.
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Examples

Let’s try just a torus.
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Piecewise-linear Dynamics

Given a phase space X , and a dynamical system (X ,R, π), the system is

piecewise-linear if the trajectories are linear on each simplex in the

triangulation of X .
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PL dynamics examples

Consider a 4-fold approximation of an annulus, with all trajectories

spiraling in towards the center of the annulus.
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Foliations



1-foliations

Let S be an atlas on a phase space X , that is, a collection of open sets

and maps, (Ui , ϕi ), where ϕi : Ui → Rn is a smooth embedding, and the

set of all Ui covers M, with ϕi and ϕj agreeing on their overlap.

Each pair (Ui , ϕi ) ∈ S is known as a chart.
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1-foliations

Fix some indexing set A. Let F = {Lα : α ∈ A} be a collection of arcwise

connected subsets of M. F is a 1-dimensional folation of M if

(i) Lα ∩ Lβ = ∅ for α 6= β

(ii)
⋃

α∈A Lα = M.

(iii) Given any point p ∈ M, there exists a chart of (Uλ, ϕλ) about p,

such that for Lα with Lα ∩ Uλ 6= ∅, each path component of

ϕ(Lα ∩ Uλ) is of the form

{x1 ∈ ϕλ(Uλ) : x2 = c1, x3 = c2, . . . , xn = cn−1}

where each ci is a constant determined by Lα.
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Each Lα is a leaf of the foliation F . We can view the embeddings as

splitting Rn into two pieces, R and Rn−1. On R, the coordinates of the

embedding vary with Lα, but on Rn−1, the coordinates are fixed.

We say the foliation is oriented if we choose a direction in which we can

move on the leaves.
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Measured-foliations

Can we come up with an idea, similar to volume-preserving dynamical

systems, for a foliation?

• Start with a foliation of X .

• Divide X up into little subsets, called flow boxes.

• The flow boxes should be small enough that, inside of a box, the

leaves of the foliation only move in one direction.

• On each box a subset of X which is not parallel to any leaf, is a

small transversal.

• We need a function η which assigns a real number to each small

transversal.
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Examples

Start with a box
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Examples

Only one coordinate changes on each leaf.
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Examples

Add in a transversal, which we call α.

α
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Examples

Throw in some coordinates, and I declare η(α) = 6

(−3,−3) (3,−3)

(3, 3)(−3, 3)

α
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Isotopies of transversals

Given two transversals α and β, we say α is isotopic to β, if α can be

moved to β, with both endpoints staying on leaves.

(−3,−3) (3,−3)

(3, 3)(−3, 3)

αβ
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Given a space X , and a foliation F on X , we say that F is a

measured-foliation with measure η, if, for any two isotopic small

transversals α and β,

η(α) = η(β).
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Relating foliations and dynamics



Volume-preserving dynamics ⇒ measured-foliation

Let’s take a hyperboloid of one sheet X , with parametric equations

• x(u, v) =
√
u2 + 1 cos(v)

• y(u, v) =
√
u2 + 1 sin(v)

• z(u, v) = u

for u ∈ (−1, 1) and v ∈ [0, 2π)
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For each (x , y , z) ∈ X , define

π(t, (x , y , z)) =
(√

z2 + 1 cos(tan−1 y/x + t),
√
z2 + 1 sin(tan−1 y/x + t), z

)

We can check that this is a dynamical system (by being careful with the

arctangent, and that the trajectories on X look like this.
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We can also check that this dynamical system is volume-preserving. Not

too tough.

But it can also be used to make a measured-foliation, with each

trajectory corresponding to a leaf.
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Measured foliations ⇒ volume-preserving dynamics

What about the other direction?

• Start with a measured foliation.

• The change in all but one coordinate is preserved when we move

between isotopic transversals.

• For each leaf, calculate it’s length.

• Adjust the speed of the dynamical system so that the change in the

remaining coordinate is preserved.
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So what is this good for?

Here’s a problem I needed to solve recently.

Can we find a volume-preserving, non-singular, PL dynamical system on a

cylinder, with a solid torus missing from the inside of the cylinder, where

the leaves around the missing torus are circles, and the leaves on the

outside boundary of the cylinder are vertical lines?

Good luck building that directly from a dynamical system!

It’s still not exactly easy with a foliation, but at least it’s possible!
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