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Abstract

In 1969, Jones and Yorke [3] produced a dynamical system on R3 with all

trajectories bounded. This was accomplished using a countable set of

nested tori of increasing size. We show here how, using a different

collection of nested shapes, we can construct a dynamical system with all

trajectories bounded, which also preserves volume.
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Considerations

• All dynamical systems here are continuous. They are R actions on

R3, generated by a vector field. The phase space is Ω, with map

π : R× Ω→ Ω.

• If µ is a measure on Ω, such that for any measurable set A ⊂ Ω and

any t ∈ R, µ(A) = µ(π(−t,A)), then (R,Ω, π, µ) is a

measure-preserving dynamical system [5].

• In the case that µ given by a smooth volume form and the

dynamical system is parallel to a smooth vector field ~v on Ω, the

measure-preserving condition is equivalent to the divergence

equation [2]

∇ · ~v = 0.

• Such a dynamical system is called volume-preserving
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Jones-Yorke Construction [3]



• Define the function c(r) = 2
3 (4r+1 − 4).

• Construct a set of tori, {Tr : r ∈ 0, 1, 2, . . .}, where, for

u, v ∈ [0, 2π], Tr is the region bounded by the parametric surface

x = 4r (2 + cos(u)) cos(v)

y = 4r (2 + cos(u)) sin(v) + c(r)

z = 4r sin(u)

if r is even

x = 4r sin(u)

y = 4r (2 + cos(u)) sin(v) + c(r)

z = 4r (2 + cos(u)) cos(v)

if r is odd

Figure 1: T0,T1,T2. Note that
⋃

Tn = R3.
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In [3], a flow on R3 is constructed which is non-singular, and with all

trajectories bounded.

• Let p = (x , y , z) be a point in R3.

• Let i(r) = (−1)n+1+1
2

• Let G0(p) = (y ,−x , 0)

• G1(p) = (0,−z , y).

• h0(p) =max{0,min{1, 1− d(T 0, p)}}
• hr (p) =max{0,min{1, 1− d(T r , p), d(T r−1, p)}}, where d is the

distance under the Euclidean metric.

• The flow on R3 is then

~F (p) =
∞∑
r=0

Gi(r)(p − (0, c(r), 0))hr (p). (1)
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Figure 2: Jones-Yorke flow local to T0
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Main result



Theorem

There exists a C∞ non-singular volume-preserving dynamical system on

R3, with all trajectories bounded.

6



Finding a volume-preserving flow around a torus

We can use a flow around a circle as motivation.

Figure 3: Divergence-free flow around a circle

Rotating this around the vertical axis yields a flow around a solid torus.

This won’t agree with the Jones-Yorke flow on the boundary of the torus.
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The trick

• We can use bump functions to make the flow agree with the

Jones-Yorke flow on the boundary of the torus.

• Bump functions tend to mess up the divergence.

• Use cylindrical coordinates, with a bump function that only depends

on r and z .
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• Define a function which measures the distance of a point (r , θ, z)

from the boundary of a torus Tn (when Tn is centered at the origin)

by,

hn(r , z) =
√

z2 + (r − 2 · 4n)2 − 4n

• Define the bump function

b(h) =


1 if h ≤ 0

e
− 1

1−(h−1)2
+1

if h ∈ (0, 1)

0 otherwise
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The flow is then given by

WTn = 〈0,−b(hn(r , z))− rθ
∂b(hn(r , z))

∂z
, (b(hn(r , z))− 1).

Figure 4: WT0 around a solid torus
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WTn = 〈0, bn+
∂bn
∂z

rθ(6·22n−1)−∂bn
∂z

r2 cos(θ), (1−bn)(r sin(θ)−6·22n−1)〉.

• WTn is divergence free.

• WTn smooth approaches a flow on Tn by circular orbits.

• WTn is vertical at distance 1 from the boundary of Tn.

• This vertical component makes it difficult to embed this into the

next torus in the Jones-Yorke construction.
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Move away from the torus

Construct a new shape, which is diffeomorphic to a torus, and can

address the issue with the vertical component.

Define an obround of radius R as the set of points in R2

{(x , y) ∈ R2 : x ∈ [−R,R], y = ±R}∪{(x , y) ∈ R2 : (x±2R)2+y2 = R2}.

An obround is the boundary of a square of side length 2r , with semi

circles of radius r appended to the right and left sides.
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Figure 5: Obround with radius 2
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A tobround of major radius R and minor radius r , with r < R, is the

Cartesian product of a solid disk of radius r and an obround of radius R.
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Figure 6: Tobround with major radius 2, and minor radius 1
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The process of constructing the flow is as follows:

• Construct a nested sequence of tobrounds, whose union is R3.

• Define a flow in each tobround with non-singular trajectories that

are contained in the tobround in which they originate.

• The distance from the boundary of a tobround to the boundary of

the larger tobround in which it is nested must always be greater than

or equal to 2.

• Construct a volume-preserving diffeomorphism from a solid torus to

a tobround for each tobround in the construction.

• Construct a smooth, volume-preserving flow around the torus, which

is vertical at distance 1 from the boundary of the torus.

• Use the flow around the torus to construct a flow in a neighborhood

of each tobround.

• The resulting flow smooth agrees with the existing flow on the

nested tobrounds, is non-singular, has all trajectories trapped within

a particular tobround, and preserves volume.
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Define a sequence of tobrounds whose union is R3.

• Let O0 be a tobround with minor radius 1 and major radius 2

• If n > 0 is even, let On be the tobround with minor radius 6 · 22n−1

and major radius 6 · 22n, shifted 6 · 22n units positively along the

y -axis.

• If n > 0 is odd, the major and minor radii are as defined above, as is

the shifting along the y -axis, but the entire obround is rotated about

the y−axis by an angle of π/2.
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Figure 7: O0 nested in O1

Note that ⋃
n∈N
On = R3.
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Flow on nested tobrounds

• Construct a flow on R3 by defining it on each tobround.

• For each p ∈ R3, let d(p,On) be the usual distance function.

• For each On, let on(d(p,On) be the smooth bump function which

returns 1 on the boundary of On and 0 for all points whose distance

from On is greater than or equal to 1.
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Define a piecewise vector field in Cartesian coordinates on O0 by

·
p=


〈y , 0, 0〉 if x ∈ [−2, 2]

〈y , 2− x , 0〉 if x > 2 and (x − 2)2 + y2 ∈ [1, 9]

〈y ,−x − 2, 0〉 if x < −2 and (x + 2)2 + y2 ∈ [1, 9]

The trajectories are then clockwise oriented obrounds, within the

tobround O′. This is non-singular, and all trajectories are bounded.
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Figure 8: O0 with obround trajectories
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Let o 0 be the bump function above, with argument assumed to be

d(p,O0). Extend our flow to O1 by

·
p=



〈o 0y , 0, (1− o 0)(y − 24)〉
if z ∈ [−24, 24]

〈o 0y , o 0(2− x) + (1− o 0)(24− z), (1− o 0)(y − 24)〉
if z > 24 and (z − 24)2 + (y − 24)2 ∈ [12, 36]

〈o 0y , o 0(−x − 2) + (1− o 0)(−z − 24), (1− o 0)(y − 24)〉
if z < −24 and (z − 24)2 + (y − 24)2 ∈ [12, 36]
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Figure 9: Trajectories near O0
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Figure 10: Trajectories near O0
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• The bump function ensures that this flow is smooth with respect to

the existing flow on O0.

• It is non-singular, and all trajectories are bounded within O1.

• The flow at distance 1 from the boundary of O0 is 〈0, 0, y − 24〉.
• As O0 is an attractor, this flow is not currently volume-preserving.
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Diffeomorphism from torus to tobround

• Let On be a tobround with major radius M and minor radius m, and

central obround On

• Let Tn be a solid torus with major radius M(1 + 2
π ) and minor radius

m and central circle Tn

• Define a diffeomorphism gn on from the central circle of Tn (in polar

coordinates) to the central obround of On (in Cartesian coordinates).
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For brevity, let M̂ =
√

2πr
π+2 + M2 − 2M, then

gn(r , θ) =



(−M
π (π + 2)θ + M, rπ

M(π+2) + M − 1)

if θ ∈ [0, 2π
π+2 )

(M̂ cos(π+2
π θ + π

2 − 2)−M, M̂ sin(π+2
π θ + π

2 − 2))

if θ ∈ [ 2π
π+2 , π)

(M
π (π + 2)(θ − π)−M, rπ

M(π+2) −M − 1)

if θ ∈ [π, π(π+4
π+2 ))

(M̂ cos(π+2
π θ − 3π

2 − 4) + M, M̂ sin(π+2
π θ − 3π

2 − 4)

if θ ∈ [π(π+4
π+2 ), 2π)
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Figure 11: Central circle and central obround under g1
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• Both the torus and the tobround have the same minor radius and are

each oriented in the xy -plane.

• Let Dm be a solid 2-disk of radius m.

• Tn = Tn × Dm

• On = On × Dm.

• Extend gn by defining Gn : Tn → On as Gn(Tn) = gn(Tn)× Dm

• Gn is then a diffeomorphism. As the Jacobian of each piece of gn
has determinant 1, and the map is the identity on Dm, Gn is volume

preserving.
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Figure 12: Torus and Tobround under G1
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Use the same flow around the torus as was constructed earlier.

WTn = 〈0, bn+
∂bn
∂z

rθ(6·22n−1)−∂bn
∂z

r2 cos(θ), (1−bn)(r sin(θ)−6·22n−1)〉.
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Figure 13: WT0 around a solid torus 32



WTn = 〈0, bn+
∂bn
∂z

rθ(6·22n−1)−∂bn
∂z

r2 cos(θ), (1−bn)(r sin(θ)−6·22n−1)〉.

• WTn is divergence free.

• WTn is smooth with respect to a flow on Tn by circular orbits.

• WTn is vertical at distance 1 from the boundary of Tn.

• Let Gn,∗ be the Jacobian of Gn, then Wn = Gn,∗(WTn) is a

divergence-free flow.

• Wn is vertical at distance 1 from the boundary of On.
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Inserting this flow around each tobround On in our construction results in

a volume-preserving flow inside of each tobround On+1.

• This can be inserted with a rotation if n is odd

• The flow has not caused any trajectories contained in a tobround to

leave that tobround, since the modification only exists up to a

distance 1 from the boundary of a tobround, and the boundary of

the next largest tobround is at least 2 units away.

• As the flow on this modified region agrees with the flow previously

constructed at all transitions, we have a non-singular,

volume-preserving dynamical system on R3, with all trajectories

bounded.
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Figure 14: Trajectories near O0
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Figure 15: Trajectories near O0
36



References

Coddington, E. and Levinson, N. Theory of Ordinary Differential

Equations, McGraw-Hill Book Company, New York, 1955.

Hirsch, M., Smale, S., Devaney, R., Differential Equations,

Dynamical Systems, and an Introduction to Chaos, Elsevier

Academic Press, Oxford, UK, 2004.

Jones, G.S. and Yorke, J.A. The existence and non-existence of

critical points in bounded flows, Journal of Differential Equations, 6,

1969, 236-246.

Kuperberg, G. A volume-preserving counterexample to the Seifert

conjecture, Comment. Math. Helv. 71, 1996, no. 1, 70-97.

Royden, H.L., Fitzpatrick, P.M., Real Analysis, 4th edition, Pearson,

Boston, 2010

37


	Jones-Yorke Construction JY
	Main result

