A volume-preserving dynamical system in \mathbb{R}^{3} with bounded trajectories

Jeff Ford

Auburn University

Abstract

In 1969, Jones and Yorke [3] produced a dynamical system on \mathbb{R}^{3} with all trajectories bounded. This was accomplished using a countable set of nested tori of increasing size. We show here how, using a different collection of nested shapes, we can construct a dynamical system with all trajectories bounded, which also preserves volume.

Considerations

- All dynamical systems here are continuous. They are \mathbb{R} actions on \mathbb{R}^{3}, generated by a vector field. The phase space is Ω, with map $\pi: \mathbb{R} \times \Omega \rightarrow \Omega$.
- If μ is a measure on Ω, such that for any measurable set $A \subset \Omega$ and any $t \in \mathbb{R}, \mu(A)=\mu(\pi(-t, A))$, then $(\mathbb{R}, \Omega, \pi, \mu)$ is a measure-preserving dynamical system [5].
- In the case that μ given by a smooth volume form and the dynamical system is parallel to a smooth vector field \vec{v} on Ω, the measure-preserving condition is equivalent to the divergence equation [2]

$$
\nabla \cdot \vec{v}=0 .
$$

- Such a dynamical system is called volume-preserving

Jones-Yorke Construction [3]

- Define the function $c(r)=\frac{2}{3}\left(4^{r+1}-4\right)$.
- Construct a set of tori, $\left\{T_{r}: r \in 0,1,2, \ldots\right\}$, where, for $u, v \in[0,2 \pi], T_{r}$ is the region bounded by the parametric surface

$$
\begin{aligned}
& x=4^{r}(2+\cos (u)) \cos (v) \\
& y=4^{r}(2+\cos (u)) \sin (v)+c(r) \\
& z=4^{r} \sin (u) \\
& \text { if } r \text { is even }
\end{aligned}
$$

$$
\begin{aligned}
& x=4^{r} \sin (u) \\
& y=4^{r}(2+\cos (u)) \sin (v)+c(r) \\
& z=4^{r}(2+\cos (u)) \cos (v)
\end{aligned}
$$

$$
\text { if } r \text { is odd }
$$

- Define the function $c(r)=\frac{2}{3}\left(4^{r+1}-4\right)$.
- Construct a set of tori, $\left\{T_{r}: r \in 0,1,2, \ldots\right\}$, where, for $u, v \in[0,2 \pi], T_{r}$ is the region bounded by the parametric surface

$$
\begin{array}{ll}
x=4^{r}(2+\cos (u)) \cos (v) & x=4^{r} \sin (u) \\
y=4^{r}(2+\cos (u)) \sin (v)+c(r) & y=4^{r}(2+\cos (u)) \sin (v)+c(r) \\
z=4^{r} \sin (u) & z=4^{r}(2+\cos (u)) \cos (v) \\
\text { if } r \text { is even } & \text { if } r \text { is odd }
\end{array}
$$

In [3], a flow on \mathbb{R}^{3} is constructed which is non-singular, and with all trajectories bounded.

- Let $p=(x, y, z)$ be a point in \mathbb{R}^{3}.
- Let $i(r)=\frac{(-1)^{n+1}+1}{2}$
- Let $\mathfrak{G}_{0}(p)=(y,-x, 0)$
- $\mathfrak{G}_{1}(p)=(0,-z, y)$.
- $\mathfrak{h}_{0}(p)=\max \left\{0, \min \left\{1,1-d\left(T^{0}, p\right)\right\}\right\}$
- $\mathfrak{h}_{r}(p)=\max \left\{0, \min \left\{1,1-d\left(T^{r}, p\right), d\left(T^{r-1}, p\right)\right\}\right\}$, where d is the distance under the Euclidean metric.
- The flow on \mathbb{R}^{3} is then

$$
\begin{equation*}
\vec{F}(p)=\sum_{r=0}^{\infty} \mathfrak{G}_{i(r)}(p-(0, c(r), 0)) \mathfrak{h}_{r}(p) \tag{1}
\end{equation*}
$$

Figure 2: Jones-Yorke flow local to T_{0}

Main result

Theorem

There exists a C^{∞} non-singular volume-preserving dynamical system on \mathbb{R}^{3}, with all trajectories bounded.

Finding a volume-preserving flow around a torus

We can use a flow around a circle as motivation.

Finding a volume-preserving flow around a torus

We can use a flow around a circle as motivation.

Figure 3: Divergence-free flow around a circle

Finding a volume-preserving flow around a torus

We can use a flow around a circle as motivation.

Figure 3: Divergence-free flow around a circle

Rotating this around the vertical axis yields a flow around a solid torus.

Finding a volume-preserving flow around a torus

We can use a flow around a circle as motivation.

Figure 3: Divergence-free flow around a circle

Rotating this around the vertical axis yields a flow around a solid torus. This won't agree with the Jones-Yorke flow on the boundary of the torus.

The trick

- We can use bump functions to make the flow agree with the Jones-Yorke flow on the boundary of the torus.

The trick

- We can use bump functions to make the flow agree with the Jones-Yorke flow on the boundary of the torus.
- Bump functions tend to mess up the divergence.

The trick

- We can use bump functions to make the flow agree with the Jones-Yorke flow on the boundary of the torus.
- Bump functions tend to mess up the divergence.
- Use cylindrical coordinates, with a bump function that only depends on r and z.
- Define a function which measures the distance of a point (r, θ, z) from the boundary of a torus T_{n} (when T_{n} is centered at the origin) by,

$$
h_{n}(r, z)=\sqrt{z^{2}+\left(r-2 \cdot 4^{n}\right)^{2}}-4^{n}
$$

- Define the bump function

$$
b(h)=\left\{\begin{array}{ccc}
1 & \text { if } & h \leq 0 \\
e^{-\frac{1}{1-(h-1)^{2}}+1} & \text { if } & h \in(0,1) \\
0 & & \text { otherwise }
\end{array}\right.
$$

The flow is then given by

$$
W_{T_{n}}=\left\langle 0,-b\left(h_{n}(r, z)\right)-r \theta \frac{\partial b\left(h_{n}(r, z)\right)}{\partial z},\left(b\left(h_{n}(r, z)\right)-1\right) .\right.
$$

The flow is then given by

$$
W_{T_{n}}=\left\langle 0,-b\left(h_{n}(r, z)\right)-r \theta \frac{\partial b\left(h_{n}(r, z)\right)}{\partial z},\left(b\left(h_{n}(r, z)\right)-1\right) .\right.
$$

$$
W_{T_{n}}=\left\langle 0, b_{n}+\frac{\partial b_{n}}{\partial z} r \theta\left(6 \cdot 2^{2 n-1}\right)-\frac{\partial b_{n}}{\partial z} r^{2} \cos (\theta),\left(1-b_{n}\right)\left(r \sin (\theta)-6 \cdot 2^{2 n-1}\right)\right\rangle .
$$

- $W_{T_{n}}$ is divergence free.

$$
W_{T_{n}}=\left\langle 0, b_{n}+\frac{\partial b_{n}}{\partial z} r \theta\left(6 \cdot 2^{2 n-1}\right)-\frac{\partial b_{n}}{\partial z} r^{2} \cos (\theta),\left(1-b_{n}\right)\left(r \sin (\theta)-6 \cdot 2^{2 n-1}\right)\right\rangle .
$$

- $W_{T_{n}}$ is divergence free.
- $W_{T_{n}}$ smooth approaches a flow on T_{n} by circular orbits.

$$
W_{T_{n}}=\left\langle 0, b_{n}+\frac{\partial b_{n}}{\partial z} r \theta\left(6 \cdot 2^{2 n-1}\right)-\frac{\partial b_{n}}{\partial z} r^{2} \cos (\theta),\left(1-b_{n}\right)\left(r \sin (\theta)-6 \cdot 2^{2 n-1}\right)\right\rangle .
$$

- $W_{T_{n}}$ is divergence free.
- $W_{T_{n}}$ smooth approaches a flow on T_{n} by circular orbits.
- $W_{T_{n}}$ is vertical at distance 1 from the boundary of T_{n}.

$$
W_{T_{n}}=\left\langle 0, b_{n}+\frac{\partial b_{n}}{\partial z} r \theta\left(6 \cdot 2^{2 n-1}\right)-\frac{\partial b_{n}}{\partial z} r^{2} \cos (\theta),\left(1-b_{n}\right)\left(r \sin (\theta)-6 \cdot 2^{2 n-1}\right)\right\rangle .
$$

- $W_{T_{n}}$ is divergence free.
- $W_{T_{n}}$ smooth approaches a flow on T_{n} by circular orbits.
- $W_{T_{n}}$ is vertical at distance 1 from the boundary of T_{n}.
- This vertical component makes it difficult to embed this into the next torus in the Jones-Yorke construction.

Move away from the torus

Construct a new shape, which is diffeomorphic to a torus, and can address the issue with the vertical component.

Move away from the torus

Construct a new shape, which is diffeomorphic to a torus, and can address the issue with the vertical component.
Define an obround of radius R as the set of points in \mathbb{R}^{2}
$\left\{(x, y) \in \mathbb{R}^{2}: x \in[-R, R], y= \pm R\right\} \cup\left\{(x, y) \in \mathbb{R}^{2}:(x \pm 2 R)^{2}+y^{2}=R^{2}\right\}$.
An obround is the boundary of a square of side length $2 r$, with semi circles of radius r appended to the right and left sides.

Figure 5: Obround with radius 2

A tobround of major radius R and minor radius r, with $r<R$, is the Cartesian product of a solid disk of radius r and an obround of radius R.

Figure 6: Tobround with major radius 2, and minor radius 1

The process of constructing the flow is as follows:

- Construct a nested sequence of tobrounds, whose union is \mathbb{R}^{3}.

The process of constructing the flow is as follows:

- Construct a nested sequence of tobrounds, whose union is \mathbb{R}^{3}.
- Define a flow in each tobround with non-singular trajectories that are contained in the tobround in which they originate.

The process of constructing the flow is as follows:

- Construct a nested sequence of tobrounds, whose union is \mathbb{R}^{3}.
- Define a flow in each tobround with non-singular trajectories that are contained in the tobround in which they originate.
- The distance from the boundary of a tobround to the boundary of the larger tobround in which it is nested must always be greater than or equal to 2 .

The process of constructing the flow is as follows:

- Construct a nested sequence of tobrounds, whose union is \mathbb{R}^{3}.
- Define a flow in each tobround with non-singular trajectories that are contained in the tobround in which they originate.
- The distance from the boundary of a tobround to the boundary of the larger tobround in which it is nested must always be greater than or equal to 2.
- Construct a volume-preserving diffeomorphism from a solid torus to a tobround for each tobround in the construction.

The process of constructing the flow is as follows:

- Construct a nested sequence of tobrounds, whose union is \mathbb{R}^{3}.
- Define a flow in each tobround with non-singular trajectories that are contained in the tobround in which they originate.
- The distance from the boundary of a tobround to the boundary of the larger tobround in which it is nested must always be greater than or equal to 2 .
- Construct a volume-preserving diffeomorphism from a solid torus to a tobround for each tobround in the construction.
- Construct a smooth, volume-preserving flow around the torus, which is vertical at distance 1 from the boundary of the torus.

The process of constructing the flow is as follows:

- Construct a nested sequence of tobrounds, whose union is \mathbb{R}^{3}.
- Define a flow in each tobround with non-singular trajectories that are contained in the tobround in which they originate.
- The distance from the boundary of a tobround to the boundary of the larger tobround in which it is nested must always be greater than or equal to 2 .
- Construct a volume-preserving diffeomorphism from a solid torus to a tobround for each tobround in the construction.
- Construct a smooth, volume-preserving flow around the torus, which is vertical at distance 1 from the boundary of the torus.
- Use the flow around the torus to construct a flow in a neighborhood of each tobround.

The process of constructing the flow is as follows:

- Construct a nested sequence of tobrounds, whose union is \mathbb{R}^{3}.
- Define a flow in each tobround with non-singular trajectories that are contained in the tobround in which they originate.
- The distance from the boundary of a tobround to the boundary of the larger tobround in which it is nested must always be greater than or equal to 2 .
- Construct a volume-preserving diffeomorphism from a solid torus to a tobround for each tobround in the construction.
- Construct a smooth, volume-preserving flow around the torus, which is vertical at distance 1 from the boundary of the torus.
- Use the flow around the torus to construct a flow in a neighborhood of each tobround.
- The resulting flow smooth agrees with the existing flow on the nested tobrounds, is non-singular, has all trajectories trapped within a particular tobround, and preserves volume.

Define a sequence of tobrounds whose union is \mathbb{R}^{3}.

- Let \mathcal{O}_{0} be a tobround with minor radius 1 and major radius 2
- If $n>0$ is even, let \mathcal{O}_{n} be the tobround with minor radius $6 \cdot 2^{2 n-1}$ and major radius $6 \cdot 2^{2 n}$, shifted $6 \cdot 2^{2 n}$ units positively along the y-axis.
- If $n>0$ is odd, the major and minor radii are as defined above, as is the shifting along the y-axis, but the entire obround is rotated about the y-axis by an angle of $\pi / 2$.

Figure 7: \mathcal{O}_{0} nested in \mathcal{O}_{1}

Note that

$$
\bigcup_{n \in \mathbb{N}} \mathcal{O}_{n}=\mathbb{R}^{3}
$$

Flow on nested tobrounds

- Construct a flow on \mathbb{R}^{3} by defining it on each tobround.
- For each $p \in \mathbb{R}^{3}$, let $d\left(p, \mathcal{O}_{n}\right)$ be the usual distance function.
- For each \mathcal{O}_{n}, let $o_{n}\left(d\left(p, \mathcal{O}_{n}\right)\right.$ be the smooth bump function which returns 1 on the boundary of \mathcal{O}_{n} and 0 for all points whose distance from \mathcal{O}_{n} is greater than or equal to 1 .

Define a piecewise vector field in Cartesian coordinates on \mathcal{O}_{0} by

$$
\dot{p}=\left\{\begin{aligned}
\langle y, 0,0\rangle & \text { if } x \in[-2,2] \\
\langle y, 2-x, 0\rangle & \text { if } x>2 \text { and }(x-2)^{2}+y^{2} \in[1,9] \\
\langle y,-x-2,0\rangle & \text { if } x<-2 \text { and }(x+2)^{2}+y^{2} \in[1,9]
\end{aligned}\right.
$$

The trajectories are then clockwise oriented obrounds, within the tobround \mathcal{O},. This is non-singular, and all trajectories are bounded.

Figure 8: \mathcal{O}_{0} with obround trajectories

Let o_{0} be the bump function above, with argument assumed to be $d\left(p, \mathcal{O}_{0}\right)$. Extend our flow to \mathcal{O}_{1} by

$$
\dot{p}=\left\{\begin{array}{c}
\left\langle o_{0} y, 0,\left(1-o_{0}\right)(y-24)\right\rangle \\
\text { if } z \in[-24,24] \\
\left\langle o_{0} y, o_{0}(2-x)+\left(1-o_{0}\right)(24-z),\left(1-o_{0}\right)(y-24)\right\rangle \\
\text { if } z>24 \text { and }(z-24)^{2}+(y-24)^{2} \in[12,36] \\
\left\langle o_{0} y, o_{0}(-x-2)+\left(1-o_{0}\right)(-z-24),\left(1-o_{0}\right)(y-24)\right\rangle \\
\text { if } z<-24 \text { and }(z-24)^{2}+(y-24)^{2} \in[12,36]
\end{array}\right.
$$

Figure 9: Trajectories near \mathcal{O}_{0}

Figure 10: Trajectories near \mathcal{O}_{0}

- The bump function ensures that this flow is smooth with respect to the existing flow on \mathcal{O}_{0}.
- It is non-singular, and all trajectories are bounded within \mathcal{O}_{1}.
- The flow at distance 1 from the boundary of \mathcal{O}_{0} is $\langle 0,0, y-24\rangle$.
- As \mathcal{O}_{0} is an attractor, this flow is not currently volume-preserving.

Diffeomorphism from torus to tobround

- Let \mathcal{O}_{n} be a tobround with major radius M and minor radius m, and central obround O_{n}
- Let \mathcal{T}_{n} be a solid torus with major radius $M\left(1+\frac{2}{\pi}\right)$ and minor radius m and central circle T_{n}
- Define a diffeomorphism g_{n} on from the central circle of \mathcal{T}_{n} (in polar coordinates) to the central obround of \mathcal{O}_{n} (in Cartesian coordinates).

For brevity, let $\hat{M}=\sqrt{\frac{2 \pi r}{\pi+2}+M^{2}-2 M}$, then

$$
g_{n}(r, \theta)=\left\{\begin{array}{c}
\left(-\frac{M}{\pi}(\pi+2) \theta+M, \frac{r \pi}{M(\pi+2)}+M-1\right) \\
\text { if } \theta \in\left[0, \frac{2 \pi}{\pi+2}\right) \\
\left(\hat{M} \cos \left(\frac{\pi+2}{\pi} \theta+\frac{\pi}{2}-2\right)-M, \hat{M} \sin \left(\frac{\pi+2}{\pi} \theta+\frac{\pi}{2}-2\right)\right) \\
\text { if } \theta \in\left[\frac{2 \pi}{\pi+2}, \pi\right) \\
\left(\frac{M}{\pi}(\pi+2)(\theta-\pi)-M, M(\pi+2)-M-1\right) \\
\text { if } \theta \in\left[\pi, \pi\left(\frac{\pi+4}{\pi+2}\right)\right) \\
\left(\hat{M} \cos \left(\frac{\pi+2}{\pi} \theta-\frac{3 \pi}{2}-4\right)+M, \hat{M} \sin \left(\frac{\pi+2}{\pi} \theta-\frac{3 \pi}{2}-4\right)\right. \\
\text { if } \theta \in\left[\pi\left(\frac{\pi+4}{\pi+2}\right), 2 \pi\right)
\end{array}\right.
$$

Figure 11: Central circle and central obround under g_{1}

- Both the torus and the tobround have the same minor radius and are each oriented in the $x y$-plane.
- Both the torus and the tobround have the same minor radius and are each oriented in the $x y$-plane.
- Let D_{m} be a solid 2-disk of radius m.
- Both the torus and the tobround have the same minor radius and are each oriented in the $x y$-plane.
- Let D_{m} be a solid 2-disk of radius m.
- $\mathcal{T}_{n}=T_{n} \times D_{m}$
- $\mathcal{O}_{n}=O_{n} \times D_{m}$.
- Both the torus and the tobround have the same minor radius and are each oriented in the $x y$-plane.
- Let D_{m} be a solid 2-disk of radius m.
- $\mathcal{T}_{n}=T_{n} \times D_{m}$
- $\mathcal{O}_{n}=O_{n} \times D_{m}$.
- Extend g_{n} by defining $G_{n}: \mathcal{T}_{n} \rightarrow \mathcal{O}_{n}$ as $G_{n}\left(\mathcal{T}_{n}\right)=g_{n}\left(T_{n}\right) \times D_{m}$
- Both the torus and the tobround have the same minor radius and are each oriented in the $x y$-plane.
- Let D_{m} be a solid 2-disk of radius m.
- $\mathcal{T}_{n}=T_{n} \times D_{m}$
- $\mathcal{O}_{n}=O_{n} \times D_{m}$.
- Extend g_{n} by defining $G_{n}: \mathcal{T}_{n} \rightarrow \mathcal{O}_{n}$ as $G_{n}\left(\mathcal{T}_{n}\right)=g_{n}\left(T_{n}\right) \times D_{m}$
- G_{n} is then a diffeomorphism. As the Jacobian of each piece of g_{n} has determinant 1 , and the map is the identity on D_{m}, G_{n} is volume preserving.

Figure 12: Torus and Tobround under G_{1}

Use the same flow around the torus as was constructed earlier.

$$
W_{\mathcal{T}_{n}}=\left\langle 0, b_{n}+\frac{\partial b_{n}}{\partial z} r \theta\left(6 \cdot 2^{2 n-1}\right)-\frac{\partial b_{n}}{\partial z} r^{2} \cos (\theta),\left(1-b_{n}\right)\left(r \sin (\theta)-6 \cdot 2^{2 n-1}\right)\right\rangle .
$$

Figure 13: $W_{\mathcal{T}_{0}}$ around a solid torus

$$
W_{\mathcal{T}_{n}}=\left\langle 0, b_{n}+\frac{\partial b_{n}}{\partial z} r \theta\left(6 \cdot 2^{2 n-1}\right)-\frac{\partial b_{n}}{\partial z} r^{2} \cos (\theta),\left(1-b_{n}\right)\left(r \sin (\theta)-6 \cdot 2^{2 n-1}\right)\right\rangle .
$$

- $W_{\mathcal{T}_{n}}$ is divergence free.
- $W_{\mathcal{T}_{n}}$ is smooth with respect to a flow on \mathcal{T}_{n} by circular orbits.
- $W_{\mathcal{T}_{n}}$ is vertical at distance 1 from the boundary of \mathcal{T}_{n}.

$$
W_{\mathcal{T}_{n}}=\left\langle 0, b_{n}+\frac{\partial b_{n}}{\partial z} r \theta\left(6 \cdot 2^{2 n-1}\right)-\frac{\partial b_{n}}{\partial z} r^{2} \cos (\theta),\left(1-b_{n}\right)\left(r \sin (\theta)-6 \cdot 2^{2 n-1}\right)\right\rangle .
$$

- $W_{\mathcal{T}_{n}}$ is divergence free.
- $W_{\mathcal{T}_{n}}$ is smooth with respect to a flow on \mathcal{T}_{n} by circular orbits.
- $W_{\mathcal{T}_{n}}$ is vertical at distance 1 from the boundary of \mathcal{T}_{n}.
- Let $G_{n, *}$ be the Jacobian of G_{n}, then $W_{n}=G_{n, *}\left(W_{\mathcal{T}_{n}}\right)$ is a divergence-free flow.

$$
W_{\mathcal{T}_{n}}=\left\langle 0, b_{n}+\frac{\partial b_{n}}{\partial z} r \theta\left(6 \cdot 2^{2 n-1}\right)-\frac{\partial b_{n}}{\partial z} r^{2} \cos (\theta),\left(1-b_{n}\right)\left(r \sin (\theta)-6 \cdot 2^{2 n-1}\right)\right\rangle .
$$

- $W_{\mathcal{T}_{n}}$ is divergence free.
- $W_{\mathcal{T}_{n}}$ is smooth with respect to a flow on \mathcal{T}_{n} by circular orbits.
- $W_{\mathcal{T}_{n}}$ is vertical at distance 1 from the boundary of \mathcal{T}_{n}.
- Let $G_{n, *}$ be the Jacobian of G_{n}, then $W_{n}=G_{n, *}\left(W_{\mathcal{T}_{n}}\right)$ is a divergence-free flow.
- W_{n} is vertical at distance 1 from the boundary of \mathcal{O}_{n}.

Inserting this flow around each tobround \mathcal{O}_{n} in our construction results in a volume-preserving flow inside of each tobround \mathcal{O}_{n+1}.

- This can be inserted with a rotation if n is odd
- The flow has not caused any trajectories contained in a tobround to leave that tobround, since the modification only exists up to a distance 1 from the boundary of a tobround, and the boundary of the next largest tobround is at least 2 units away.
- As the flow on this modified region agrees with the flow previously constructed at all transitions, we have a non-singular, volume-preserving dynamical system on \mathbb{R}^{3}, with all trajectories bounded.

Figure 14: Trajectories near \mathcal{O}_{0}

Figure 15: Trajectories near \mathcal{O}_{0}

References

围 Coddington, E. and Levinson, N. Theory of Ordinary Differential Equations, McGraw-Hill Book Company, New York, 1955.
戋 Hirsch, M., Smale, S., Devaney, R., Differential Equations, Dynamical Systems, and an Introduction to Chaos, Elsevier Academic Press, Oxford, UK, 2004.

Jones, G.S. and Yorke, J.A. The existence and non-existence of critical points in bounded flows, Journal of Differential Equations, 6, 1969, 236-246.
Ruperberg, G. A volume-preserving counterexample to the Seifert conjecture, Comment. Math. Helv. 71, 1996, no. 1, 70-97.
R Royden, H.L., Fitzpatrick, P.M., Real Analysis, 4th edition, Pearson, Boston, 2010

