Tilings and Tiling Spaces

Jeff Ford
October 8, 2018

Gustavus Adolphus College

Table of contents

1. What is a tiling?
2. How do we make a tiling space?
3. What tools can we use to study the tiling space?

What is a tiling?

Tilings

Definition

A tiling T of \mathbb{R}^{n} of a countable set $\left\{t_{1}, t_{2}, \ldots\right\}$ of subsets of \mathbb{R}^{n} called tiles, such that

- Each tile is homoemorphic to a closed ball
- All tiles are pairwise disjoint
- The union of all tiles is \mathbb{R}^{n}

One-dimensional tilings

Use 2 tiles, let a be an interval of length $\frac{1+\sqrt{5}}{2}$ and let b be an interval of length 1.

One-dimensional tilings

Use 2 tiles, let a be an interval of length $\frac{1+\sqrt{5}}{2}$ and let b be an interval of length 1.

We start with this, where the red dot is the origin.

One-dimensional tilings

Use 2 tiles, let a be an interval of length $\frac{1+\sqrt{5}}{2}$ and let b be an interval of length 1.

We start with this, where the red dot is the origin.

Replace a by $a b$ and b by a.

One-dimensional tilings

We end up with this

Periodic tilings of the plane

Aperiodic tilings of the plane

What makes a tiling aperiodic?

- A patch of a tiling T is some finite subset of T.

What makes a tiling aperiodic?

- A patch of a tiling T is some finite subset of T.
- The support of a patch is the union of it's tiles.

What makes a tiling aperiodic?

- A patch of a tiling T is some finite subset of T.
- The support of a patch is the union of it's tiles.
- If T is a tiling and $x \in \mathbb{R}^{n}$, we can definite the new tiling $T+x$ by translating every tile in T.

What makes a tiling aperiodic?

- A patch of a tiling T is some finite subset of T.
- The support of a patch is the union of it's tiles.
- If T is a tiling and $x \in \mathbb{R}^{n}$, we can definite the new tiling $T+x$ by translating every tile in T.
- If $T \neq T+x$ for all $x \in \mathbb{R}^{n}$, then T is aperiodic

Aperiodic tilings of the plane

Ways to make a tiling

We frequently start with a finite set $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$, called prototiles.

Ways to make a tiling

We frequently start with a finite set $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$, called prototiles.

Substitutions

Given a prototile set, we can form a tiling by substitution if we have:

Ways to make a tiling

We frequently start with a finite set $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$, called prototiles.

Substitutions

Given a prototile set, we can form a tiling by substitution if we have:

- A scaling constant $\lambda>1$
- A rule ω such that, for any prototile $p \in P, \omega(p)$ is a patch with suppoart λP and whose tiles are translates of members of P.

Fibonacci Tiling of \mathbb{R}

2d example

How do we make a tiling space?

The tiling metric

The distance between two tilings T_{1} and T_{2} is less than ϵ if T_{1} and T_{2} agree on a ball around the origin, of radius less than $\frac{1}{\epsilon}$, up to translation by at most ϵ. The distance between the tilings is the infimum of these values or $\frac{1}{\sqrt{2}}$ if no such ϵ exists.

The tiling metric

The distance between two tilings T_{1} and T_{2} is less than ϵ if T_{1} and T_{2} agree on a ball around the origin, of radius less than $\frac{1}{\epsilon}$, up to translation by at most ϵ. The distance between the tilings is the infimum of these values or $\frac{1}{\sqrt{2}}$ if no such ϵ exists. Then
$d\left(T_{1}, T_{2}\right)=\inf \left(\frac{1}{\sqrt{2}} \cup\left\{\epsilon: T_{1}+u\right.\right.$ and $T_{2}+v$ agree on $\left.\left.B_{\frac{1}{\epsilon}}(0),\|u\|,\|v\|<\epsilon\right\}\right)$

Examples of close tilings

T_{1}

Examples of close tilings

T_{2}

Examples of close tilings

Examples of close tilings

T_{1}

Examples of close tilings

T_{2}

Examples of close tilings

$$
d\left(T_{1}, T_{2}\right)=\frac{1}{\text { radius of the ball around the origin }}
$$

Defining a Tiling Space

Given a tiling T of \mathbb{R}^{n}, define Ω_{T} as the completion of the set $\left\{T+x: x \in \mathbb{R}^{n}\right\}$.

Defining a Tiling Space

Given a tiling T of \mathbb{R}^{n}, define Ω_{T} as the completion of the set $\left\{T+x: x \in \mathbb{R}^{n}\right\}$.

- All elements of Ω_{T} are tilings.

Defining a Tiling Space

Given a tiling T of \mathbb{R}^{n}, define Ω_{T} as the completion of the set $\left\{T+x: x \in \mathbb{R}^{n}\right\}$.

- All elements of Ω_{T} are tilings.
- For each tiling $T^{\prime} \in \Omega_{T}$, every patch in T^{\prime} appears somewhere in T.

Defining a Tiling Space

Given a tiling T of \mathbb{R}^{n}, define Ω_{T} as the completion of the set $\left\{T+x: x \in \mathbb{R}^{n}\right\}$.

- All elements of Ω_{T} are tilings.
- For each tiling $T^{\prime} \in \Omega_{T}$, every patch in T^{\prime} appears somewhere in T.
- It is a sequentially compact metric space

Defining a Tiling Space

Given a tiling T of \mathbb{R}^{n}, define Ω_{T} as the completion of the set $\left\{T+x: x \in \mathbb{R}^{n}\right\}$.

- All elements of Ω_{T} are tilings.
- For each tiling $T^{\prime} \in \Omega_{T}$, every patch in T^{\prime} appears somewhere in T.
- It is a sequentially compact metric space
- It is also a Smale Space

Smale's Axiom A Systems

An Axiom A system is a map f on a smooth manifold M, satisfying the conditions that

- The non-wandering set of $f, \Omega(f)$ is hyperbolic and compact.
- The periodic points of f are dense in $\Omega(f)$.

Smale Spaces

A Smale Space is an Axiom A system where

- Each point is the intersection of a locally stable set, and a locally unstable set.

Smale Spaces

A Smale Space is an Axiom A system where

- Each point is the intersection of a locally stable set, and a locally unstable set.
- In a tiling space, the stable set is the tilings that agree with it on a large ball around the origin.

Smale Spaces

A Smale Space is an Axiom A system where

- Each point is the intersection of a locally stable set, and a locally unstable set.
- In a tiling space, the stable set is the tilings that agree with it on a large ball around the origin.
- The unstable set is the tilings that agree after small translations.

What tools can we use to study the tiling space?

Inverse Limits

- Assume we have a collection of topological spaces Γ_{n} and continuous maps $f_{n}: \Gamma_{n+1} \rightarrow \Gamma_{n}$.

Inverse Limits

- Assume we have a collection of topological spaces Γ_{n} and continuous maps $f_{n}: \Gamma_{n+1} \rightarrow \Gamma_{n}$.
- The inverse limit space of a collection of topological spaces as above is

$$
\underset{\leftarrow}{\lim }(\Gamma, f)=\left\{\left(x_{0}, x_{1}, \ldots\right) \in \Pi \Gamma_{n} \mid \text { for all } n, x_{n}=f_{n}\left(x_{n+1}\right)\right\} .
$$

Inverse Limits

- Assume we have a collection of topological spaces Γ_{n} and continuous maps $f_{n}: \Gamma_{n+1} \rightarrow \Gamma_{n}$.
- The inverse limit space of a collection of topological spaces as above is

$$
\underset{\leftrightarrows}{\lim }(\Gamma, f)=\left\{\left(x_{0}, x_{1}, \ldots\right) \in \Pi \Gamma_{n} \mid \text { for all } n, x_{n}=f_{n}\left(x_{n+1}\right)\right\} .
$$

- Under suitable hypotheses, tiling spaces are inverse limit spaces

Inverse Limits

- Assume we have a collection of topological spaces Γ_{n} and continuous maps $f_{n}: \Gamma_{n+1} \rightarrow \Gamma_{n}$.
- The inverse limit space of a collection of topological spaces as above is

$$
\underset{\leftrightarrows}{\lim }(\Gamma, f)=\left\{\left(x_{0}, x_{1}, \ldots\right) \in \Pi \Gamma_{n} \mid \text { for all } n, x_{n}=f_{n}\left(x_{n+1}\right)\right\} .
$$

- Under suitable hypotheses, tiling spaces are inverse limit spaces
- There are theorems for dealing with inverse limit spaces!

Fibonacci Example

- Let each Γ_{i} be this CW-complex.

- Let f_{i} be the substitution map for the Fibonacci tiling, where

$$
a \rightarrow a b \quad b \rightarrow a
$$

Fibonacci Example

- Let each Γ_{i} be this CW-complex.

- Let f_{i} be the substitution map for the Fibonacci tiling, where

$$
a \rightarrow a b \quad b \rightarrow a
$$

- The problem here is, it looks like $b b$ is an acceptable patch, but it never actually shows up in the tiling space.

Forcing the border

A tiling space Ω with substittion map ω forces it's border if, given two tilings T, T^{\prime} and a point $t \in T, t \in T^{\prime}$, there exists a positive integer N such that $\omega^{N}(T)$ and $\omega^{N}\left(T^{\prime}\right)$ coincide.

Forcing the border

A tiling space Ω with substittion map ω forces it's border if, given two tilings T, T^{\prime} and a point $t \in T, t \in T^{\prime}$, there exists a positive integer N such that $\omega^{N}(T)$ and $\omega^{N}\left(T^{\prime}\right)$ coincide.

That is, the tiles must have the same pattern of neighboring tiles following the substitution.

Forcing the border

A tiling space Ω with substittion map ω forces it's border if, given two tilings T, T^{\prime} and a point $t \in T, t \in T^{\prime}$, there exists a positive integer N such that $\omega^{N}(T)$ and $\omega^{N}\left(T^{\prime}\right)$ coincide.

That is, the tiles must have the same pattern of neighboring tiles following the substitution.

Helpful Theorem!

If a substitution forces it's border, then the inverse limit of the component spaces under the substitution map is homeomorphic to the tiling space.

How do we force the border?

- A collared tile is a relabeling, so the that label isn't just it's tile, but also it's neighbors

How do we force the border?

- A collared tile is a relabeling, so the that label isn't just it's tile, but also it's neighbors
- Rather than having the tiles a and b, let us instead use the tiles

$$
1=(a) b(a), 2=(b) a(a), 3=(a) a(b), \text { and } 4=(b) a(b) .
$$

How do we force the border?

- A collared tile is a relabeling, so the that label isn't just it's tile, but also it's neighbors
- Rather than having the tiles a and b, let us instead use the tiles $1=(a) b(a), 2=(b) a(a), 3=(a) a(b)$, and $4=(b) a(b)$.

Why is this useful?

Suppose we had 2 different substitutions on \mathbb{R}.

Why is this useful?

Suppose we had 2 different substitutions on \mathbb{R}.

$$
a \rightarrow a b \text { and } b \rightarrow a
$$

Why is this useful?

Suppose we had 2 different substitutions on \mathbb{R}.

$$
\begin{aligned}
& a \rightarrow a b \text { and } b \rightarrow a \\
& a \rightarrow a b \text { and } b \rightarrow b a
\end{aligned}
$$

Why is this useful?

Suppose we had 2 different substitutions on \mathbb{R}.

$$
\begin{aligned}
& a \rightarrow a b \text { and } b \rightarrow a \\
& a \rightarrow a b \text { and } b \rightarrow b a
\end{aligned}
$$

.Both should be different, but both contain the patch
...abaababaabaab...

Why is this useful?

Suppose we had 2 different substitutions on \mathbb{R}.

$$
\begin{aligned}
& a \rightarrow a b \text { and } b \rightarrow a \\
& a \rightarrow a b \text { and } b \rightarrow b a
\end{aligned}
$$

.Both should be different, but both contain the patch ...abaababaabaab...

How can we distinguish them?

Time for Algebraic Topology!

Since a tiling space is an inverse limit space, and that the Čech cohomology of an inverse limit space is isomorphic to the direct limit of the singular cohomology of the individual spaces in the inverse limit, we can actually compute the Čech cohomology of a tiling space.

Time for Algebraic Topology!

Since a tiling space is an inverse limit space, and that the Čech cohomology of an inverse limit space is isomorphic to the direct limit of the singular cohomology of the individual spaces in the inverse limit, we can actually compute the Čech cohomology of a tiling space.

$$
\check{H}^{n}\left(\underset{\leftrightarrows}{\lim }(\Gamma, \varphi) \cong \lim _{\longrightarrow}\left(H^{n}(\Gamma), \varphi^{*}\right)\right.
$$

where φ is the bonding map and φ^{*} is the induced map on the cohomology groups of Γ.

For a future talk!

- If the Čech cohomology groups or the two tiling spaces are different, then the tilings are combinatorially different.
- Direct limits can be calculuated in this case with linear algebra and symbolic dynamics.

For a future talk!

- If the Čech cohomology groups or the two tiling spaces are different, then the tilings are combinatorially different.
- Direct limits can be calculuated in this case with linear algebra and symbolic dynamics.
- Why does it have to be Čech cohomology? Why do homology, homotopy, and singular/simplicial cohomology fail?

For a future talk!

- If the Čech cohomology groups or the two tiling spaces are different, then the tilings are combinatorially different.
- Direct limits can be calculuated in this case with linear algebra and symbolic dynamics.
- Why does it have to be Čech cohomology? Why do homology, homotopy, and singular/simplicial cohomology fail?
- What are C^{*}-algebras, and why do they help in this case?

For a future talk!

- If the Čech cohomology groups or the two tiling spaces are different, then the tilings are combinatorially different.
- Direct limits can be calculuated in this case with linear algebra and symbolic dynamics.
- Why does it have to be Čech cohomology? Why do homology, homotopy, and singular/simplicial cohomology fail?
- What are C^{*}-algebras, and why do they help in this case?
- What is Putnam homology, and why might it give us more information?

