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Tilings

Definition

A tiling T of Rn of a countable set {t1, t2, . . .} of subsets of Rn called

tiles, such that

• Each tile is homoemorphic to a closed ball

• All tiles are pairwise disjoint

• The union of all tiles is Rn
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One-dimensional tilings

Use 2 tiles, let a be an interval of length 1+
√
5

2 and let b be an interval of

length 1.

We start with this, where the red dot is the origin.

a b

Replace a by ab and b by a.
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One-dimensional tilings

We end up with this

a b

a b a

a b a a b

a b a a b a b a
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Periodic tilings of the plane
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Aperiodic tilings of the plane
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What makes a tiling aperiodic?

• A patch of a tiling T is some finite subset of T .

• The support of a patch is the union of it’s tiles.

• If T is a tiling and x ∈ Rn, we can definite the new tiling T + x by

translating every tile in T .

• If T 6= T + x for all x ∈ Rn, then T is aperiodic
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Aperiodic tilings of the plane
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Ways to make a tiling

We frequently start with a finite set P = {p1, p2, . . . , pn}, called

prototiles.

Substitutions

Given a prototile set, we can form a tiling by substitution if we have:

• A scaling constant λ > 1

• A rule ω such that, for any prototile p ∈ P, ω(p) is a patch with

suppoart λP and whose tiles are translates of members of P.
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Fibonacci Tiling of R

a b

a b a

a b a a b

a b a a b a b a
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2d example
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How do we make a tiling space?



The tiling metric

The distance between two tilings T1 and T2 is less than ε if T1 and T2

agree on a ball around the origin, of radius less than 1
ε , up to translation

by at most ε. The distance between the tilings is the infimum of these

values or 1√
2

if no such ε exists.

Then

d(T1,T2) = inf(
1√
2
∪{ε : T1+u and T2+v agree on B 1

ε
(0), ||u||, ||v || < ε})
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Examples of close tilings

T1
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Examples of close tilings

T2
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Examples of close tilings

T1 is just a small shift of T2
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Examples of close tilings

T1
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Examples of close tilings

T2
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Examples of close tilings

d(T1,T2) =
1

radius of the ball around the origin
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Defining a Tiling Space

Given a tiling T of Rn, define ΩT as the completion of the set

{T + x : x ∈ Rn}.

• All elements of ΩT are tilings.

• For each tiling T ′ ∈ ΩT , every patch in T ′ appears somewhere in T .

• It is a sequentially compact metric space

• It is also a Smale Space
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Smale’s Axiom A Systems

An Axiom A system is a map f on a smooth manifold M, satisfying the

conditions that

• The non-wandering set of f , Ω(f ) is hyperbolic and compact.

• The periodic points of f are dense in Ω(f ).
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Smale Spaces

A Smale Space is an Axiom A system where

• Each point is the intersection of a locally stable set, and a locally

unstable set.

• In a tiling space, the stable set is the tilings that agree with it on a

large ball around the origin.

• The unstable set is the tilings that agree after small translations.
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What tools can we use to study

the tiling space?



Inverse Limits

• Assume we have a collection of topological spaces Γn and

continuous maps fn : Γn+1 → Γn.

• The inverse limit space of a collection of topological spaces as

above is

lim←−(Γ, f ) = {(x0, x1, . . .) ∈ Π Γn| for all n, xn = fn(xn+1)}.

• Under suitable hypotheses, tiling spaces are inverse limit spaces

• There are theorems for dealing with inverse limit spaces!
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Fibonacci Example

• Let each Γi be this CW -complex.

a b

• Let fi be the substitution map for the Fibonacci tiling, where

a→ ab b → a

• The problem here is, it looks like bb is an acceptable patch, but it

never actually shows up in the tiling space.
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Forcing the border

A tiling space Ω with substittion map ω forces it’s border if, given two

tilings T ,T ′ and a point t ∈ T , t ∈ T ′, there exists a positive integer N

such that ωN(T ) and ωN(T ′) coincide.

That is, the tiles must have the same pattern of neighboring tiles

following the substitution.

Helpful Theorem!

If a substitution forces it’s border, then the inverse limit of the component

spaces under the substitution map is homeomorphic to the tiling space.
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How do we force the border?

• A collared tile is a relabeling, so the that label isn’t just it’s tile, but

also it’s neighbors

• Rather than having the tiles a and b, let us instead use the tiles

1 = (a)b(a), 2 = (b)a(a), 3 = (a)a(b), and 4 = (b)a(b).

1 = (a)b(a)

4 = (b)a(b)

2 = (b)a(a)3 = (a)a(b)
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Why is this useful?

Suppose we had 2 different substitutions on R.

a→ ab and b → a

a→ ab and b → ba

.Both should be different, but both contain the patch

...abaababaabaab...

How can we distinguish them?
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Time for Algebraic Topology!

Since a tiling space is an inverse limit space, and that the Čech

cohomology of an inverse limit space is isomorphic to the direct limit of

the singular cohomology of the individual spaces in the inverse limit, we

can actually compute the Čech cohomology of a tiling space.

Ȟn(lim←−(Γ, ϕ) ∼= lim−→(Hn(Γ), ϕ∗)

where ϕ is the bonding map and ϕ∗ is the induced map on the

cohomology groups of Γ.
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For a future talk!

• If the Čech cohomology groups or the two tiling spaces are different,

then the tilings are combinatorially different.

• Direct limits can be calculuated in this case with linear algebra and

symbolic dynamics.

• Why does it have to be Čech cohomology? Why do homology,

homotopy, and singular/simplicial cohomology fail?

• What are C∗-algebras, and why do they help in this case?

• What is Putnam homology, and why might it give us more

information?
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• If the Čech cohomology groups or the two tiling spaces are different,

then the tilings are combinatorially different.

• Direct limits can be calculuated in this case with linear algebra and

symbolic dynamics.
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